O.P.Code: 18EC0412

R18

H.T.No.

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

B.TechIII Year I Semester Supplementary Examinations June-2024 ELECTROMAGNETIC THEORY AND TRANSMISSION LINES

		ELECTROMAGNETIC THEORY AND TRANSMISSION L	INES	24	
Tim	ie: 3	(Electronics and Communication Engineering)			
PART-A			ax. Marks: 60		
		(Answer all the Questions $5 \times 2 = 10$ Marks)			
1	a	Define Gauss's law.	CO1	L1	23/1
	b	What is meant by Magnetostatic fields?	CO2		2M
	c	Define Transformer EMF.	CO3		2M
	d	List wave equation for E and H in free space?	CO4		2M 2M
	e	What is the relationship between characteristic impedance and			2M
		propagation constant.	000		2111
		PART-B			
		(Answer all Five Units $5 \times 10 = 50$ Marks)			
		UNIT-I			1.6
2	a	Define Gauss's Law. Apply Gauss's law to evaluate Electric Flux density	CO3	L1	7M
		for a uniformly charged Sphere.	000		/ 14.1
	b	What are the advantages and applications of Gauss law?	CO1	L1	3M
		OR			
3		Explain the following with expression.	CO ₂	L2	10M
		a) Coloumb's law. b) Electric field intensity. c) Gauss law.			
		UNIT-II			
4	a	Determine Maxwell's Equations for Magnetostatic Field.	CO3	L5	5M
	b	Determine the Magnetic Flux Density due to Infinite Sheet of Current.	CO ₂	L5	5M
_		OR			
5		Explain any two applications of Ampere's Circuit law.	CO ₂	L2	10M
		UNIT-III			
6	a	Prove that one of the Maxwell's equation is $\nabla \times H = Jd + J$.	CO ₂	L5	5M
	b	An antenna radiates in free space and E= 80 cos(500t-8z)ax V/m.	CO3	L3	5M
		Calculate ω and β.			
_		OR			
7	a .	Explain Faraday's law of electromagnetic induction and derive the	CO ₃	L2	6M
		Expression for Induced EMF.			
	D 1	Explain the motional EMF and derive the expression for the maxwell	CO ₃	L2	4M
	•	equation.			
Ω		UNIT-IV			
8	a 1	Determine the expression for intrinsic impendence and propagation	CO ₅	L5	6M
		constant in a good conductor.			
	1 0	n a Non-magnetic medium, E=4sin(2πX 107t-0.8x)ax V/m. Find εr, η.	CO4	L3	4M
9	Т	OR			
J	7	Evaluate the expressions for reflection coefficient and transmission	CO ₅	L5	10M
		oefficient by a normal incident wave for a dielectric medium.			

UNIT-V

10	a	Evaluate the equation for Characteristic Impedance of a Transmission line.	CO6	L5	5M
	b	A telephone line has the following parameters: R =30 Ω /km, G =0 L = 100mH/km, C = 20 μ F/m. At 1kHz, calculate the characteristic impedance, propagation constant and velocity of the signal.	CO6	L3	5M
		OR			
11	a	Explain about the smith chart for finding the SWR and Reflection coefficient.	CO6	L2	7M
	b	List out the applications of smith chart? *** END ***	CO6	L1	3M